Acta Crystallographica Section C

Crystal Structure

Communications

ISSN 0108-2701

Acetamidoxime

Marilyn M. Olmstead ${ }^{\text {a* }}$ and Javad J. Sahbari ${ }^{\text {b }}$

${ }^{\text {a Department of Chemistry, University of California, Davis, CA 95616, USA, and }}$
${ }^{\text {b }} 10$ Vista Real, Mill Valley, CA 94941, USA
Correspondence e-mail: olmstead@indigo.ucdavis.edu

Received 22 October 2003
Accepted 5 November 2003
Online 30 November 2003
The oxime of acetamide, viz. N-hydroxyethanimidamide, $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}$, has a complex hydrogen-bonding arrangement in its crystal structure, featuring one strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond together with weaker hydrogen bonding involving the amide groups. Conjugation effects lead to atypical distances and angles.

Comment

The molecular structure of acetamidoxime, (I), is shown in Fig. 1. The molecular geometry has somewhat atypical distances and angles, which can be explained by a contribution from a resonance form that places partial double-bond character in the $\mathrm{C} 1-\mathrm{N} 2$ bond. The $\mathrm{C} 1-\mathrm{N} 1$ and $\mathrm{N} 1-\mathrm{O} 1$ distances are longer than average, having values of 1.295 (2) and 1.442 (2) \AA, respectively, whereas the $\mathrm{C} 1-\mathrm{N} 2$ distance is 1.346 (2) \AA. In addition, the $\mathrm{C}=\mathrm{N}-\mathrm{O}$ angle [109.37 (13) ${ }^{\circ}$] is more acute than comparable angles in other oxime structures (Chertanova et al., 1994). For a more exact comparison, the structure of N, N-dimethylacetamidoxime (Bright et al., 1973) differs only in the replacement of NH_{2} by $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$, yet the $\mathrm{C}=\mathrm{N}$ and $\mathrm{N}-\mathrm{O}$ distances are shorter [1.284 (2) and 1.430 (2) \AA, respectively], while the $\mathrm{C}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$ distance is longer $\left[1.367(3) \AA\right.$] and the $\mathrm{C}=\mathrm{N}-\mathrm{O}$ angle is $111.8(2)^{\circ}$. Excluding the methyl H atoms, the entire molecule of (I) is planar; based on unit weights, the r.m.s. deviation from this plane is $0.069 \AA$.

(I)

The major form of hydrogen bonding in the structure of (I) (Fig. 2 and Table 1) is between the $\mathrm{O}-\mathrm{H}$ donor and the oxime N -atom acceptor, as is commonly found. This hydrogen bond consists of a monodirectional interaction along a screw axis of

Figure 1
A view of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
the structure in the c direction. The $\mathrm{N} \cdots \mathrm{O}$ distance is longer than average [2.804 (2) Å; Chertanova et al., 1994]. Weaker hydrogen bonds are apparent for each of the amide H atoms; atom $\mathrm{H} 2 A$ participates in an intramolecular hydrogen bond, while atom $\mathrm{H} 2 B$ participates in a hydrogen bond to the oxime O-atom acceptor.

Figure 2
A view of the hydrogen-bonding scheme in the structure of (I). [Symmetry codes: (i) $x-\frac{1}{2}, \frac{1}{2}-y, 1-z$; (ii) $1-x, \frac{1}{2}+y, \frac{3}{2}-z$.]

Experimental

The title compound was synthesized from acetamide and hydroxylamine according to the method described by Sahbari \& Russell (2000, 2001). Hygroscopic crystals were obtained by recrystallization from perfluorocyclohexane.

Crystal data

$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O} \quad \mathrm{Cu} K \alpha$ radiation
$M_{r}=74.09$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=5.0422$ (14) \AA
$b=8.016$ (3) A
$c=9.284(3) \AA$
$V=375.2(2) \AA^{3}$
$Z=4$
$Z=4$
$D_{x}=1.311 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

$$
\begin{aligned}
& \text { Syntex } P 2_{1} \text { diffractometer } \\
& 2 \theta-\omega \text { scans } \\
& 886 \text { measured reflections } \\
& 415 \text { independent reflections } \\
& 413 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.013 \\
& \theta_{\max }=66.7^{\circ}
\end{aligned}
$$

> Cell parameters from 50 reflections $\theta=7.3-29.9^{\circ}$ $\mu=0.89 \mathrm{~mm}^{-1}$ $T=130(2) \mathrm{K}$ Parallelepiped, colorless $0.50 \times 0.26 \times 0.25 \mathrm{~mm}$ $h=-2 \rightarrow 6$ $k=0 \rightarrow 9$ $l=0 \rightarrow 11$ 2 standard reflections \quad every 198 reflections intensity decay: $<0.1 \%$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.072$
$S=1.26$
415 reflections
60 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0415 P)^{2}\right. \\
& \quad+0.0757 P] \\
& \quad \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.008 \\
& \Delta \rho_{\max }=0.15 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.17 \mathrm{e} \AA^{-3} \\
& \text { Extinction correction: } S H E L X L 97 \\
& \text { Extinction coefficient: } 0.056(6)
\end{aligned}
$$

Table 1
Hydrogen-bonding geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	H $\cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} \cdots \mathrm{N} 1^{\text {i }}$	0.91 (3)	1.89 (3)	2.804 (2)	178 (3)
$\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 1$	0.90 (3)	2.21 (3)	2.554 (2)	102 (2)
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B} \cdots \mathrm{O} 1^{\text {ii }}$	0.88 (3)	2.20 (3)	3.078 (2)	173 (2)

Symmetry codes: (i) $x-\frac{1}{2}, \frac{1}{2}-y, 1-z$; (ii) $1-x, \frac{1}{2}+y, \frac{3}{2}-z$.

The title molecule crystallized in the chiral space group $P 2_{1} 2_{1} 2_{1}$, but the absolute structure was indeterminate since only light atoms were present. The merging of Friedel pairs reduced the reflections-toparameter ratio from 9.15 to 6.92 , but the reliability of the structure determination did not change, being based more on the quality of the data than their number. H atoms on atoms N 2 and O 1 were
refined freely, while H atoms on atom C 2 were refined using a riding model, with $\mathrm{C}-\mathrm{H}$ distances of $0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})$ values of $1.5 U_{\text {eq }}(\mathrm{C} 2)$.

Data collection: P3-PC (Siemens, 1994); cell refinement: P3-PC; data reduction: XDISK (Siemens, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL (Sheldrick, 1994); software used to prepare material for publication: SHELXL97.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: NA1623). Services for accessing these data are described at the back of the journal.

References

Bright, D., Plessius, H. A. \& de Boer, J. (1973). J. Chem. Soc. Perkin Trans. 2, pp. 2106-2109.
Chertanova, L., Pascard, C. \& Sheremetev, A. (1994). Acta Cryst. B50, 708716.

Sahbari, J. J. \& Russell, J. W. (2000). US Patent Appl. 6166254.
Sahbari, J. J. \& Russell, J. W. (2001). US Patent Appl. 6235935 B1.
Sheldrick, G. M. (1994). SHELXTL. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1994). P3-PC (Version 4.23) and XDISK. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

